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Statistical considerations regarding the use 
of ratios to adjust data 

DB Allison', F Paultre!, MI Goran”, ET Poehlman* and SB Heymsfield! 

!Obesity Research Center, St Luke’s/Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, 1090 
Amsterdam Ave, 14th Floor, New York, NY10025; 7Department of Nutrition Sciences, Energy Metabolism Research Unit, University of 
Alabama, Birmingham, Alabama; *Baltimore Veterans Affairs Medical Center, University of Maryland School of Medicine, Baltimore, 

Maryland, USA 

OBJECTIVE: The use of ratios to adjust data (i.e. ‘index’ variables) is common in obesity and related research. The 
rationale for the use of ratios often seems to be the desire to control or eliminate the influence of the variable in the 
denominator. The purpose of this paper is to gain a greater appreciation of the statistical assumptions underlying 

ratios and their impact on data interpretation. 

RESULTS: We demonstrate the limitations of the indiscriminant use of ratios to adjust data. Specifically, we show 

that: (1) given linearity, a zero intercept between the numerator and denominator are necessary and sufficient con- 
ditions for a ratio to remove the confounding effects of the denominator; (2) seemingly minor departures from a zero 
intercept can have major consequences on the ratio’s ability to control for the denominator; (3) the ratio of two nor- 
mally distributed variables cannot be normally distributed, and this may violate the assumptions of subsequent 
parametric statistical analyses; (4) the use of ratios affects the error distribution of the data which may also violate 
the assumptions of subsequent parametric statistical analyses; (5) the use of ratios cannot easily take nonlinear 
effects between the numerator and denominator into account; (6) the use of ratios can introduce spurious correla- 
tions among the ratios and other variables; (7) the use of ratios can create interpretive difficulties. We also clarify 
that the mean of ratios is not necessarily equivalent to the ratio of the means of the numerator and denominator. 
Finally, we present and discuss formulae for the reliability of ratios and residuals. 

CONCLUSION: Because of the above issues, we question the indiscriminant use of ratios and advocate that investi- 
gators consider regression-based approaches as alternatives. 

Keywords: ratios; index variables; regression; statistical control; data analysis 

introduction 

The use of ratios of variables (frequently called ‘index’ 

variables)' is common in obesity and related research. The 

motivation for the use of such ratios often seems to be the 

desire to ‘normalize’, ‘standardize’, ‘adjust’ or ‘control’ for 

the variable in the denominator.” Some ratios commonly 

used in obesity research include waist-to-hip ratio (WHR),? 

body mass index (BMI),’ percent fat,> resting metabolic 
rate (RMR) divided by fat free mass (FFM),°’ the activity 

factor (TEE/RMR; where TEE is total energy expendi- 

ture),™ total cholesterol to HDL cholesterol,* and VO, max 

divided by body weight.'° For further listing of specific 

ratios and discussion of their performance see Kronmal? 

and Tanner.? 
Although several investigators have pointed out specific 

problems with ratios,°!°'' a more general and comprehen- 
sive treatment has not been offered to the obesity research 

community. In our own work we have often used ratios 

(e.g. BMI, subscapular to triceps skinfold ratio)'? and have 
at times been unsure of the appropriateness of this practice. 

Thus, our purpose here is to examine the statistical assump- 

tions underlying ratio approaches and possible conse- 

quences associated with their use and misuse. 

Ratios of variables can be used for several purposes.” 
From our reviews of the obesity related literature, it appears 

that one can distinguish between the ratio of two variables 

being used simply to predict or estimate a third variable and 

the ratio being used in the context of ‘causal modeling’ or 

‘hypothesis testing’. In the former case, one is simply seek- 

ing a combination the two component variables that pro- 

vides the optimal prediction or estimation of a third vari- 

able. Although the ratio may meet this end, there are an 

infinite number of other ways to combine two pieces of 

information which may prove better. This paper is not pri- 

marily focused on this issue (see Draper and Smith!> and 
references therein for more on this topic). 

This paper is primarily concerned with the use of ratios 

in the context of ‘causal modeling’ or ‘hypothesis testing’. 

Within this context we again distinguish between two uses 

of ratios. In the first case, investigators are implicitly stat- 

ing that some ‘special’ aspect of the ratio has a relation 

with another variable that is not accounted for by either the 

numerator or denominator, individually or additively. For 

example, an investigator might posit that it is the combina- 

tion of one’s waist circumference and hip circumference 

that influences morbidity. This is equivalent to saying that 

it is this particular interaction of waist (W) and hip (H) that 

influences morbidity.2 When W/H is expressed as W*H"', 
the problem becomes familiar as one of moderated multiple 

regression.'*'5.'© The generally accepted way to test this 
sort of interaction hypothesis is to simultaneously regress 

the dependent variables (e.g. some measure of morbidity) 

on the two main effects (e.g. W and H~') and the product 
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term (e.g. W*H~'). If the regression coefficient for the 

product term is significantly different from zero then one 

can claim that the multiplicative combination W*H~' has 

some influence on morbidity above and beyond the effects 

of W or H™ or their additive combination.” In other words, 
such an analysis would show that there is something ‘spe- 

cial’ about the ratio of waist to hip. For further discussion 

of these topics see. !4!5-16!7 
The final use of ratios, i.e. ‘controlling for the denomina- 

tor’, will be the major focus of this paper. For example, 

investigators have questioned whether obese persons have 

lower RMR’s than lean persons. In absolute terms, obese 

persons tend to have higher RMR’s than lean persons due 

in part to their greater fat free mass (FFM).° This informa- 

tion leads to a reformulation of the question of whether 

obese persons have lower RMR’s than lean persons after 

accounting for their greater lean body mass. In an effort to 

address this question, several investigators compared lean 

and obese persons using the ratio of RMR to FFM. In other 

words, RMR is divided by FFM to control for FFM. 

In regard to controlling via ratios the concerns are 

twofold. First, when one’s theoretical model suggests the 

need to control for a random variable (X), then one should 

fully control for X. Second, if one uses ratios as variables in 

parametric statistical analyses, the ratios should meet the 

assumptions of these analyses. The use of a particular ratio 

is justifiable to the extent that it satisfies these criteria. 

Alternatives should be considered when a particular ratio 

does not meet these criteria. In the following nine sections 

we review issues influencing the extent to which ratios are 

likely to meet these criteria, discuss selected statistical 

properties of ratios, and offer guidelines for their interpreta- 

tion and use. Finally, we briefly discuss the general regres- 

sion approaches which offer flexible alternatives to the use 

of ratios to control for variables. 

Specific issues 

The necessity of a zero intercept 

Several authors °!°'8:!° have pointed out that using a ratio is 
a legitimate method to control for a denominator only when 

the sample intercept (b)) of the regression of the numerator 

(Y) on the denominator (X) is zero. However, to our 

knowledge no formal and exact proof has been offered for 

this statement. The central issue hinges on the desire for an 

index that is independent of (i.e. uncorrelated with) the 

denominator. If Y is the variable of interest and one 

attempts to control for another variable, say X, by forming 

a ratio, (i.e. Y/X), then one’s success in statistically con- 

trolling for X is measured by how close ry, x, the correla- 

tion between Y/X and X, is to zero. In the interests of 

space, these proofs are not presented here but can be 

obtained by writing to the first author. In these proofs, we 

show that, under linearity, when by, = 0 the expected value 

of ry;xx is zero. Furthermore, we show that under bivariate 

normality, the population intercept (B,) equaling zero is a 

necessary and sufficient condition for the population corre- 

lation (Py,x x) to equal zero. 
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Consequences of seemingly minor departures from a 

zero intercept 

In reality, by is a continuous random variable. The probabil- 

ity of a continuous random variable assuming any particu- 

lar value is zero. In other words, the probability of b, being 

exactly zero is zero (even when B, = 0). This raises the 

question, “how close to zero does b, need to be for the ratio 

to perform acceptably?’ Unfortunately, this is a question 

with no easy answer. The answer will depend on the crite- 

ria for acceptable performance. 

One rule that has been suggested is to use the ratio Y/X 

only when by is not significantly different from zero.! 

However, it is possible for ry, , to be significantly different 

from zero even when by is not significantly different from 

zero. This possibility is of concern because, assuming that 

the purpose of a ratio is to control for the denominator, a 

nonsignificant correlation between the ratio and its denomi- 

nator is really a minimum criterion for acceptable perfor- 

mance. This combination will occur whenever these two 

inequalities hold: 

n-2 
Nyix.x = (1) 

= 

(n—1)s° (2) 

where T.,;, is the value of t that cuts off the upper o/2% of 

the t distribution with n-2 degrees of freedom. The easiest 

way to prove this possibility is by illustration. We provide a 

hypothetical sample data set in Table 1 along with statisti- 

cal calculations. As demonstrated, by is not significant but 

Tyxx 1S significant, indicating that taking the ratio Y/X 

does not adequately control for X. Given this example we 

can see that testing whether by is significantly different 

from zero is a questionable heuristic for deciding when by 

is too far from zero to support using a ratio. We think our 

example is even more striking given that X and Y are them- 

selves perfectly uncorrelated. Thus, in this example, divid- 

Table 1 A hypothetical data set 

Y X Y/X 

1.86 1.91 0.98 
3.56 4.15 0.86 
2.36 2.02 1.17 
1.45 0.41 
2.26 1.94 1.17 
3.39 1.03 3.30 
3.35 3.53 0.95 
1.45 2.20 0.66 
0.49 2.93 0.17 
1.72 3.59 0.48 

Mean 2.19 2.68 1.02 
s.d. 0.95 0.95 0.82 

bo = 2.19 (t = 2.179; df = 8; P = 0.061). 
Nyx = —0.675 (P = 0.032). 
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Figure 1a Simulated homoscedastic data. (n = 500; p = 0.5). 
b Heteroscedastic data. (Data from a after ratio is taken). 

ing Y by X not only fails to control for X, but it actually 

induces a significant covariation with X. 

An alternative heuristic might be to test the significance 

of by at some very lenient level (e.g. & = 0.20) and test all 

substantive hypotheses at some stringent levels (e.g. 

a = 0.05 or 0.01). This should markedly reduce the proba- 

bility of residual confounding” due to a non-zero by intro- 
ducing a statistically significant degree of confounding into 

the relationship of Y/X with Z, where Z is some third vari- 

able of interest correlated with X. Residual confounding 

occurs when one believes one has controlled for a con- 

founder but the confounder’s influence has not been com- 

pletely removed from the variable system under study.” 
However, we have not rigorously evaluated this heuristic 

and the quality of its performance remains speculative. 

Moreover, such heuristics may be unnecessary because, as 

we discuss in the final section, the use of ratios can be 

incorporated in regression approaches that do not depend 

on a zero intercept. 

Taking a ratio affects the error distribution 

Homoscedasticity (homogeneity of variance) is a basic 

assumption of regression analysis and other parametric 

techniques.” Homoscedasticity occurs when the condition- 
al variance of Y is constant for all values of X. In contrast, 

heteroscedasticity occurs when the conditional variance of 

Y is not constant for all values of X. Figures la and 1b 

illustrate homoscedasticity and heteroscedasticity, respec- 

tively. 

Unfortunately, if Y is homoscedastic when regressed on 

X, the ratio Y/X will be heteroscedastic with respect to X 

and, in all probability, to other variables correlated with X.? 

Lynn and Bond?! explain that Y can always be expressed as 
a polynomial function of X, i.e., 

Y, = B, + + B,X? +e, (3) 

where n is the number of observations (subjects). Thus, the 

ratio, Y/X, is equivalent to: 

+ ba (4) 

Of interest is the final term of equation 4, e/X;. By 

definition e,, the error term, has mean zero, variance 6,”, 

and covariance with X equal to zero for all i’s. This implies 

that the expected value of (e,/X; given X;) is also zero but 

its variance varies as a function of X (specifically, (67.x; 
given X;) = 0,7/X;’). 

This heteroscedasticity that is potentially introduced by 

the ratio transformation violates the assumptions of virtu- 

ally all subsequent parametric statistical analysis of the 

ratio Y/X when it is considered relative to X or to variables 

correlated with X. These violations can either increase the 

type I error rate or increase the type II error rate depending 

on the specific pattern.”’ In other words, P-values and sig- 
nificance tests can no longer be trusted when heteroscedas- 

ticity is present. 

Our main point here is not to state that taking a ratio will 

always produce heteroscedasticity, but rather to demon- 

strate that taking a ratio does affect the error distribution. In 

some cases these effects can even be desirable. In fact, 

Bowerman and O’Connell™* discuss how ratios can often be 

used to restore homoscedasticity. However, having been 

alerted to the fact that taking ratios alters the error distribu- 

tion, the case for carefully checking the residuals for 

homoscedasticity becomes even more compelling. 

Finally, significance tests and P-values from parametric 

statistical analyses on heteroscedastic data can be particu- 

larly inaccurate when group n’s are unequal or other 

assumptions (e.g. normality) are also violated. This brings 

us to our next point. 

The distribution of ratios 

A perusal of any issue of /JO indicates that most investiga- 

tors rely on parametric statistical inferences. It is well 

known that many parametric statistical tests are robust to 

violations of normality.2> However, some statistical analy- 

ses, such as the path analyses and structural equation mod- 

eling frequently used in the quantitative genetic analyses of 

obesity (e.g. References 26,27), may be more sensitive to 

violations of normality.2°?? Moreover, violations of nor- 

mality can be of greater concern when sample sizes are 

small and/or variances are heterogenous”? and we showed 
in the previous section that variance of ratios may be het- 

erogenous. Thus, it is important to try to minimize depar- 

tures from normality whenever possible. 

It is therefore noteworthy that the ratio of two normally 
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distributed variables cannot be normally distributed.*° 

Under some circumstances, the departure from normality 

can be quite extreme. Unfortunately, there is no simple 

mathematical expression for the distribution of a ratio of 

two variables or its moments even if the two components of 

the ratio are normally distributed (methods for deriving the 

distribution and its moments are available.*'32>“* Thus, it 
would be prudent for investigators who are considering 

using ratios to evaluate the observed frequency distribution 

for normality (tests for normality can be found in 

D'Agostino, et al.*> This is not to say that it is not also wise 
to test the distributions of variables used in parametric 

analyses even if they are not ratios. If the ratio markedly 

deviates from normality, either the ratio should not be used 

or, if possible, it should be transformed to approximate nor- 

mality.*° Software to implement tests of normality and 
select appropriate transformations is available.°> Again, if 
marked non-normality occurs with small samples, unequal 

samples, or variance heterogeneity, then the type I or type 

II error rates may increase. 

Ratios cannot easily accommodate nonlinearity 

Thus far, we have assumed that the relationship between Y 

and X is linear. Under this restriction, we showed that tak- 

ing the ratio Y/X adequately controls for X when f, = 0. 

That is, when the model is: 

=B,X, +e, (5) 

In this case, both a linear regression of Y on X and taking 

the ratio Y/X will adequately control for X. 

However, it is well known that relationships among bio- 

logical and psychological variables are often nonlinear, 

being characterized by curved rather than straight lines.*” 

One possible such curve is characterized by the quadratic 

equation below: 

= BX? +e, (6) 

If this is the ‘correct’ model relating Y to X, then neither a 

linear regression of Y on X nor the ratio Y/X will adequate- 

ly control for X. However, both methods can be easily 

adapted to correct for non-linearity. In the ratio method, 

one can simply divide Y by X? to remove any confounding 

effects of X. Perhaps the most well known example of this 

method is Body Mass Index or Quetelet’s Index, weight 

divided by height squared (Kg/m7).** In the regression 
approach we can simply regress Y on X?. 

More generally, any time the model can be characterized 

by the following form: 

=B,X; +e, (7) 

either the regression approach or the ratio approach can 

easily accommodate the data. 

The regression approach simply regresses Y on X* while 

the ratio approach simply divides Y by X*. An example of 
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the latter is Bazette’s*® formula for the corrected QT inter- 

val from an electrocardiogram (QT, = QT/(RR)'”). Here Y 

is the QT interval, X is RR (hear rate) and k = 0.5. 

The challenge in using the approach dictated by 

equation’ is knowing the value of k. It is possible to derive 

k on the sample data through nonlinear regression. 

However, k must be solved for iteratively*® and use of this 

approach becomes more complex. Moreover, there may be 

no value of k that will provide an adequate characterization 

of the data. 

However, if we switch to a model that is nonlinear in the 

dependent variables but linear in its parameters, then the 

process becomes simpler. As stated previously, any bivari- 

ate data set can be fully characterized in the following man- 

ner: 

B, + BX, + B,X; +e, (8) 

Equation 8 is nonlinear in the independent variables and 

can, therefore, characterize curved data. However, because 

it is linear in its parameters it can be rapidly solved by ordi- 

nary least squares with standard regression software. This 

use of multiple regression with polynomial terms is a flexi- 

ble approach that can completely remove any relationship 

between Y and X, linear or nonlinear. The same cannot be 

said of the ratio approach. Even if B, = 0, under the model 

in equation 8, the ratio approach can only be used if one 

and only one f; is not zero, where j = | to n—1. Thus, in 

terms of accounting for non-linearity, the ratio approach is 

a far less flexible approach to statistical control than is the 

use of regression based approaches. 

At this point we should point out that if, instead of equa- 

tion 7, one believed the data were characterized by a multi- 

plicative model such as: 

Y = B,X'e (9) 

then a ratio approach might be quite desirable and appropri- 

ate. In this case, one need not necessarily solve for the 

parameters iteratively. Rather, by taking the natural loga- 

rithms of both sides of the equation, the equation becomes 

one that is easily solved in closed form by ordinary least 

squares regression software. Once the parameters are 

solved, the resulting equation is exponentiated and returned 

to its original form. This useful and general approach is 

customarily referred to as allometric scaling.©®8 While this 
approach is seemingly useful and can be quite useful, it 

should be noted that it makes a number of assumptions 

especially about the error distribution, introduces biases 

into the obtained coefficients that require correction, and 

has a number of other nuances.®** A complete discussion 
of allometric scaling is beyond the scope of this paper. The 

references cited provide more details. 

Spurious correlations 

Not only can a ratio fail to completely control for its 

denominator, but it can actually introduce confounding and, 

therefore, spurious correlations.”'* This is the main point of 
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Pearson’s classic paper.*! Pearson showed that under cer- 

tain not too restrictive assumptions (i.e., multivariate nor- 

mality and means that are large relative to their standard 

deviations) the correlation between two ratios can be 

derived directly from the correlations among the compo- 

nents, their means, and their standard deviations. When 

both Y and X are divided by the same denominator (e.g. z) 

this yields the following: 

2 
Ty,.xVy Vx Vz + Vz (10) 

2 + Vz -2ry 2VyVz + Vz -2ry 2VxVz 

where ry xz is the sample correlation between Y/Z and 

X/Z, and V; is the coefficient of variation of j (i.e. V; = 

Pearson‘! points out that if Y, X and Z are completely 
uncorrelated (i.e. each observation is just a random triplet) 

and the three coefficients of variation (i.e. standard devia- 

tions divided by the means) are equal, then the correlation 

of Y/Z with X/Z will be 0.5. 

Consider the following hypothetical example. Following 

the work of Drewnowski,*” an investigator wishes to test 

whether preference for fat is correlated with preference for 

sugar among free living humans. The investigator measures 

food intake via seven-day food diaries and calculates daily 

caloric intake. The means, standard deviations and correla- 

tions for this hypothetical data are displayed in Table 2. 

Although our data are hypothetical, concern with the use of 

ratios in these situations is not.47°6 
As can be seen, the correlation between sugar intake and 

fat intake is 0.15, suggesting a small positive association. 

However, the investigator may wish to control for total 

caloric intake because people who eat more in general will 

almost certainly eat more fat and sugar (note the positive 

correlations). If the investigator calculated the partial corre- 

lation of fat and sugar intake after controlling for total 

caloric intake, the answer would be 0.00. In other words, 

after controlling for total caloric intake there is no correla- 

tion between sugar preference (operationalized by sugar 

intake) and fat preference (operationalized by fat intake). 

However, if the investigator chose to ‘control for’ total 

caloric intake by correlating percent of total calories from 

fat with percent of total calories from sugar, a markedly 

different picture would emerge. Substituting the appropri- 

ate values in Table 2 into equation 9, we obtain the follow- 

ing result: Te, fa, % sugar = 0.86. Thus, in this example, 

attempting to control by the ratio method actually increases 

the confounding due to the denominator and leads to an 

extremely biased and erroneous result. 

Table 2 Hypothetical summary statistics for food intake data 

Fat calories (F) Sugar calories (S) Total calories (T) 

520 1040 2600 
80 150 700 

It should be pointed out that the preceding explanation 

and example do not imply that correlating two ratios with a 

common denominator always leads to spurious correlation, 

but rather that it can lead to spurious correlation. Finally, it 

is important to define what we mean by a spurious correla- 

tion. In the example above, when we say that the observed 

correlation of 0.86 between percent of kcal from fat and 

percent kcal from sugar is spurious, we do not mean to 

imply that the correlation is not really 0.86. On the con- 

trary, in our hypothetical example the correlation between 

%fat and %sugar really is 0.86. However, it is spurious in 

that it is not the correlation of sugar and fat intake after 

controlling for total caloric intake. 

The issue of controlling for total caloric intake in epi- 

demiological studies has received considerable atten- 

tion**®° and the current zeitgeist in epidemiological stud- 
ies is to use residuals instead of ratios.°° Although this posi- 

tion is not without controversy,°’*? most of the issues 
revolve not around the repudiation of ratios but rather on 

the interpretation and testing of regression coefficients 

when residuals are employed.*” In addition to examining 
the aforementioned literature, investigators contemplating 

the use of residuals might wish to consult other sources on 

this topic (e.g. References 52, 60, 61). 

Interpretive difficulties 

As several authors (e.g. References 1, 44-46) have previ- 

ously pointed out, the use of ratios can at times lead to 

interpretive difficulties (for example see the accompanying 

paper by Goran et al.).° In part, these difficulties stem from 

condensing two variables into one. 

Consider an investigator who reports that among a group 

of subjects (group A) the RMR/FFM ratio is greater than 

among some other group of subjects (group B). This find- 

ing can be interpreted in one of four ways: 

(1) members of group A have higher RMR’s than mem- 

bers of group B; 

(2) members of group A have lower values of FFM; 

(3) members of group A have higher values of both 

RMR and FFM but the between group difference in 

RMR is proportionately greater than the between 

group difference in FFM, or finally; 

(4) members of group A have lower values of both 

RMR and FFM but the between group difference in 

FFM is proportionately greater than the between 

group difference in RMR. 

With knowledge of only the ratios, any one of these four 

potential conclusions is possible. Thus, if investigators do 

rely on ratios of variables, it is helpful if they also report 

means and variances of the numerator and denominator 

variables so the various possibilities above can be disentan- 

gled. In addition, reporting the correlation between the 

numerator and denominator is helpful. This correlation 

should be reported within groups if groups are being com- 

pared because, as we explain in the next section, the mean 

of a ratio is not only a function of the numerator and 

denominator means and variances but also their inter- 

correlation. 
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The ratio of means is not necessarily the mean ratio 

One minor point which is not always appreciated is that the 

ratio of means is not necessarily equal to the mean ratio. 

Specifically, the ratio of means is defined as: 

rx, 2%, 

In contrast, the mean ratio is defined as: 

X, X, 

Substituting (Y-b,)(X) for b, yields: 

tee 

x} 

It can be seen that equation 13 is not equivalent to equation 

11. Thus if one wishes to calculate the mean ratio, one will 

typically need the raw data to do so. Although the mean 

ratio can be roughly estimated, it cannot be calculated sim- 

ply from the two components’ means as several authors 

seem to have done (e.g. References 47,48). However, if 

more detailed summary statistics are available (i.e. s,, SyoX, 

Y, ty), Pearson*! showed that the mean ratio can be 

approximated by: 

(14) 

Inspection of equation 14 reveals that the ratio of the means 

will only be equal to the mean of the ratios, in this approxi- 

mation, when the following condition is met: 

5,7 
(15) 

Equation 16 is met only when the intercept (b,) of the 

regression of the numerator on the denominator is zero. 

Alternatively, using the exact formula in equation 13 we 

find that the expected value of the mean ratio equals the 

ratio of the means only when by = 0. 

As an example consider data from the recently published 

Zutphen study’? some of which is reproduced in Table 3. 

Table 3 Zutphen study data (Moerman et al.) 

With Without 
gallstones gallstones 

Variable n= 806 n=54 

Tricipital skinfold (mm)? 9.8 10.1 
Subscapular skinfold (mm)? 14.7 16.5 
STR: Subscapular-to-triceps skinfold 
thickness ratio (mm) 1.6 j 
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The investigators correctly calculated the subscapular to tri- 

ceps skinfold ratio (STR) for a cohort of middle aged men. 

Subsequently, some of the men developed gallstones and 

others did not. The mean difference in STR between the 

two groups was 0.1. Given that the difference in STR 

seemed to confer increased risk for gallstones, we might 

speculate that a difference in STR of 0.1 is clinically signif- 

icant. Thus, it is interesting to note that if the mean of the 

ratio had been incorrectly calculated as the ratio of the 

mean of the numerator and the mean of the denominator, 

the obtained results would have been off by 0.1. 

Reliability of ratios and residuals 

Unfortunately, data are virtually always measured with 

error. Therefore, consideration of the reliability of measure- 

ment becomes a crucial aspect of any study. A major alter- 

native to the use of ratios is linear regression analysis 

and/or the calculation of residuals. Thus, it may also be 

instructive to consider the relative reliabilities of ratios and 

residuals. 

An approximate formula for the reliability of a ratio was 

first derived by Cronbach*® based on Pearson’s*! approxi- 
mation to the variance of a ratio. Because we have shown 

in previous sections that the ratio approach is only a viable 

strategy when B, = 0, we restrict our comparisons to that 

situation. If By = 0 then the formula for the reliability of the 

ratio reduces to: 

Py, = Pry + Pr x(Pxx -2) (16) 
Y 2 

Malgady and Colon-Malgady*! independently derived a 
formula for the reliability of a residual. The reliability of 

the residual (p,.) turns out to be equal to the approximation 

of Pyx yx When By = 0. Therefore, under the conditions 

where a ratio may be acceptable (i.e. when B, = 0), the ratio 

and residual are equally reliable. 

When using or contemplating the use of ratios or residu- 

als, investigators may wish to calculate the reliability of 

these derived scores using equation 15. However, the 

results may be disconcerting. In general, if the components 

are measured with ‘good’ reliability, the derived scores will 

Ryy = Rxx = 0.75 

Reliability of ratio or residual 
l 

OT G2 G4 G6 G7? GS GS 1 

Correlation between Y and X 

Figure 2 Reliability of ratios and residuals as a function of the 
correlation between X and Y. 
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have only ‘moderate’ reliability and components with only 

‘moderate’ reliability will generally yield derived scores 

with ‘poor’ reliability. This is illustrated in Figure 2. 

General commentary 

Thus far we have primarily described properties of ratios 

and highlighted potential concerns. Here, we offer some 

general commentary followed by some guidelines regard- 

ing the control of variables. 

First, it is important to limit the scope of our comments. 

Our paper is not meant to apply to all ratios in all contexts. 

Rather, we restricted our focus to the use of ratios of ran- 

dom variables in the context of controlling for one of the 

variables (i.e. the denominator). Thus, our comments do not 

apply to all quantities arrived at by the process of division 

(e.g. risk ratios, odds ratios, F-ratios, likelihood ratios, etc.). 

Second, all of our examples have included variables 

which are scaled such that they have a fixed zero point. 

This is typical of biological data. However, this is not true 

of most psychological test scores. Because the zero point is 

not fixed, scores on psychological tests can generally be 

scaled to have any mean and variance. In this case, one’s 

choice of scaling will dramatically alter the results obtained 

with ratios. This is not the case with regression analyses, 

whose inferential results are unaffected by linear transfor- 

mations. Thus, because psychological data have no fixed 

zero point (i.e. interval or ordinal data), the use of ratios is 

strongly discouraged. 

Regarding guidelines, put quite simply, the optimal 

approach to the data is one that gets the job done (i.e. fully 

controls for the appropriate variable(s)) and meets the 

assumptions of the statistical analyses employed. As we 

have shown, the only way to be sure that the ratio Y/X fully 

controls for X is for the intercept (b,) of the regression of Y 

on X to be zero. Because by will never be exactly zero, the 

simple ratio approach will always be questionable. 

One way to overcome this difficulty might be to subtract 

by from each Y forming the variable Y' = Y-bp. The ratio 

Y'/X will now fully control for X because the intercept of 

the regression of Y' on X will be exactly zero. One could 

now implement a more appropriate approach to the use of 

ratios as a means of control by proceeding in three steps. 

In the first step, compute the regression equation: 

¥, +b,X, +e, (17) 

In the second step, calculate Y;' as Y—bp. In the third 

step, take the ratio Y;'/X; and regress it on the other variable 

of interest (e.g. z) yielding the regression equation: 

y’ 

+6, (18) 
i 

Alternatively, one could use the new ratio as an indepen- 

dent variable in the following equation 

Z, =a, +a,— +e, 
i 0 1 > i (19) 

At this point the reader may recall that the more conven- 

tional regression equation: 

Y =b, +b,Z,+b,X, +e, (20) 

also fully controls for any linear effects of X and can also 

control for nonlinear effects through incorporation of poly- 

nomials [In an effort to control for X prior to regressing Y 

on Z, some investigators take the residual of equation 17 

and regress it on Z. It is worth noting that this is not always 

formally equivalent to computing the full regression model 

(equation 20) and testing the significance of the regression 

coefficient for Z. For further discussion see (References 52, 

53, 61).] 

What then is the difference between these approaches? 

The major difference resides in the distribution of residuals. 

One of these equations will probably meet the assumptions 

of regression analysis (i.e. that the residuals are normally 

and independently distributed with mean zero and constant 

variance) better than the other. Residual plots and other 

more sophisticated methods (see any good regression text 

for details) can be used to evaluate the extent to which the 

residuals satisfy the regression assumptions. Thus in choos- 

ing between these approaches, the better approach is the 

one that more closely satisfies the regression assumptions. 

Conclusion 

We hope that the preceding exposition proves helpful to 

investigators attempting to control for selected variables in 

analyses and contemplating the use of ratios. We believe 

that the simple approach of dividing Y by X to control for 

X will often prove inadequate. Similarly, a simple linear 

approach to controlling for X can also prove inadequate at 

times. Every method has assumptions that one must test 

and limitations that one must be aware of. Although we 

have tried to offer practical guidelines, we must emphasize 

that there is no substitute for thoroughly exploring one’s 

data, trying alternative approaches, and testing the assump- 

tions of one’s chosen technique. 
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